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Telenin’s numerical method is adapted to the problem of steady supersonic flow 
past pointed conical bodies at yaw. The method is formulated for cones of circular cross- 
sections with the intention of determining bounded analytic solutions uniformly valid in 
the region between the shock and cone surfaces. Attention is focused on the nature of 
the entropy field and the behavior of the streamlines as tiuenced by variations in 
the free-stream conditions. 

1. INTRODUC~~N 

In the past decade, extensive theoretical investigations have been made in the area 
of steady unsymmetrical supersonic flow past pointed conical bodies. For such 
flows, the existence of a shock wave attached to the cone apex is guaranteed if the 
free-stream velocity is high enough and if the semiapex angle of the cone is not too 
large. Restriction of the motion between the shock and cone surfaces to the super- 
sonic range gives rise to a class of flows characterized by the absence of a length 
scale-the class of conicalflows. These flows are governed by an elliptic system of 
nonlinear differential equations in two independent variables. Because it is im- 
possible to obtain closed-form analytical solutions to such nonlinear systems with- 
out making excessive simplifying assumptions, investigators have leaned heavily 
on numerical methods. With the renewed interest in supersonic flight and with the 
introduction of faster electronic computers, it becomes necessary to evolve simpler 
and more accurate numerical methods. Such methods should be able to provide not 
just the general solutions for conical flows but also detailed solutions in the impor- 
tant regions near the body surface. In addition, they should be valid for a wide 
range of angles of attack, free-stream Mach numbers and cone angles. 

The first attempt to obtain nonlinearized numerical solutions of the problem 
was made by Stone [l, 21. For supersonic flow past yawed cones with circular 
cross sections, he assumed that the solutions of the governing equations can be 
expanded as power series in the angle of attack, 01. The first-order theory (1948) 
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neglects second and higher powers of (Y. In this case, the differences between the 
values of field variables in yawed and unyawed flows are shown to be the first terms 
of Fourier sine or cosine series in the azimuthal angle 4. The coefficients of these 
series satisfy certain ordinary differential equations. Stone’s solutions, extensively 
tabulated by Kopal [3], are however not uniformly valid at the cone surface and 
its immediate neighborhood. The dependence of pressure and density on Fourier 
cosine series implies that entropy on the cone surface is periodic with respect to the 
azimuthal angle. This is inconsistent with the fact that the cone surface is a stream 
surface on which entropy must be constant. The second-order theory (1952), which 
took into account second powers of a?, improved Stone’s results but did not remedy 
the above inconsistency. 

The failure of Stone’s theory to predict a constant entropy on the cone surface 
was first pointed out by Ferri [4]. He introduced the concept of the entropy luyer- 
a layer of infinitesimal thickness next to the cone surface across which entropy 
changes rapidly from the value predicted by Stone’s theory to the constant value 
on the cone surface. In the same paper, Ferri proved the existence of entropy 
singularities in unsymmetrical flows past cones. At those vertical singubities 
entropy is multivalued. Thus, in the region between the cone and shock surfaces, 
constant entropy surfaces would originate at the shock. On entering the entropy 
layer, they turn sharply and converge at the vertical singularities. For circular 
cones at small angles of attack, only one such singularity was shown to exist-being 
located at the intersection of the plane of symmetry and the leeward generator of the 
cone. Ferri further suggested that for large angles of attack this vertical singularity 
I@ ofthe cone surface to a new position in the plane of symmetry. 

Following Ferri’s entropy correction on Stone’s theory, a variety of studies of 
the problem have been conducted by many authors. Common to all these later 
studies is an attempt, through varied numerical approaches, to verify and extend 
Ferri’s results. In this respect, attention was brought to focus on three aspects of 
the problem: 

(i) the shock shape and the nature of the streamlines in the region outside 
the immediate neighborhood of the cone surface, 

(ii) the thickness of the entropy layer as influenced by variation of the angle 
of attack and the free-stream Mach number, and 

(iii) the behavior of streamlines near the vertical singularities and veriGca- 
tion of any ltji oflof these singularities. 

Of the numerous numerical methods tried out on conical flow problems, the 
following are outstanding: the inverse method, Dorodnitsyn’s method of integral 
relations, the BVLR time-limiting method, and a combination of matched asympto- 
tic expansions and the PLK method. In the inverse method (Radhakrishnan 151, 
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Briggs [6,7], Mauger [8], Stocker and Mauger [93, a shock wave configuration is 
prescribed and numerical integration used to determine the hypothetical body 
shape producing the shock. Using a desk calculator, Radhakrishnan [5] looked 
for the body shape which produces a circular shock wave of semiapex angle 30” 
yawed at an angle of 20” with respect to a free stream of Mach number 10. Mauger 
[8] based his inverse method on the Garabedian technique of analytic continuation 
in a complex plane. He integrated along two families of characteristics starting 
from prescribed shocks of elliptic cross sections. Using two stream functions as 
independent variables and iterating on assumed shock configurations, Stocker and 
Mauger [9] obtained solutions for the direct problem of supersonic flow over a 
circular cone of semiapex angle 20” yawed at angles 5”, IO”, and 15” to a free 
stream of Mach number 3.53. 

In all computations employing the inverse method, fairly accurate results were 
obtained for cases in which the angles of attack are small. For these cases (Stocker 
and Mauger [9]), the streamlines converge on the vertical singularities with an 
envelope-like behavior around the hypothetical body. The envelope-like behavior 
makes it easy to determine the body shape especially where the integration is 
carried out along streamlines. However, the high gradients of flow variables in the 
entropy layer makes it impossible to determine with sufficient accuracy the values 
of these variables on the cone surface For moderate to high angles of attack, 
inverse method computations are beset with numerous difficulties. Radhakrishnan 
[5] encountered difficulties at the leeward side of the cone, resulting in a body 
shape with a hump on that side. The streamlines, while showing a tendency to 
converge, were irregular and blurred near the hump. Such results can either be 
attributed to the low accuracy inherent in the type of calculating machine used or 
to the inability of the inverse method to predict the nature of the flow in the crucial 
region surrounding the vertical singularity. However, Stocker and Mauger [9] 
recomputed the same problem using a more sophisticated machine and also 
obtained poorly defined body shape and wild streamlines. In the results by Stocker 
and Mauger for the flow over a circular cone at 10” angle of attack, the unexplained 
hump showed up again. The situation was worse for the 15” angle of attack and the 
authors could only conjecture that the phenomenon might be due to the lijt off of 
the vertical singularity at high angles of attack as suggested by Ferri. 

Based on the highly successful application of the method of integral relations to 
blunt body problems (Van Dyke, 1958; Belotserkovskii, 1966), it had been anti- 
cipated that the method would also solve conical flow problems. However, 
Chushkin and Shchennikov [lo], Brook [ll], Melnik [12] and Ndefo [13] have all 
proved the method to be unsuitable. Brook and Melmk experienced great numeri- 
cal di%culties in attempting to solve the problem of supersonic and hypersonic 
flows past elliptic cones. Using the first approximation of the method of integral 
relations, Chushkin and Shchennikov obtained solutions for the often computed 
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case of supersonic flow past a cone of semiapex angle 20” yawed at 5” to a free- 
stream of Mach number 3.53. No details of numerical computations or hint of any 
difficulties were given. Moreover, the first approximation determines only the 
shock shape and the values of the flow variables at the cone surface. It provides no 
information on the nature of the streamlines, and the existence of entropy layer and 
vertical singularity. The same case was investigated by Ndefo [13] who noted that, 
while results can be obtained to sufficient accuracy, the amount of computer time 
required and the numerical difficulties involved made it impossible to extend the 
method of integral relations to the necessary higher approximations. 

The BVLR time-limiting method was proposed by the Russian school of mathe- 
maticians (Babenko et al. [14]). In this method, the direction of the axis of the 
cone is injected into the equations as an extra independent variable t with a time- 
like behavior. The procedure transforms the elliptic differential equations of 
conical flow into a t-hyperbolic system with Cauchy data on the plane 
t = t, = constant, and boundary conditions along the body and at an unknown 
shock wave front. The solutions of conical flow are then obtained as the limit of 
solutions of the new system when t -+ 00. An algorithm is formulated in terms of 
non-linear implicit scheme and an iterative process used to linearize and make the 
scheme explicit. Although no rigorous proofs have been afforded about the exist- 
ence of the limit, this method has been used to obtain good solutions for a wide 
range of angles of attack and Mach numbers. 

R. E. Melnik ([15]) used the method of matched asymptotic expansions about 
the known Taylor-Maccoll solutions for axisymetric conical flows to investigate 
the problem of supersonic flow around slightly yawed cones with nearly circular 
cross-sections. The entropy layer was regarded as the inner region of the expansion, 
while the outer region is the rest of the area between the shock and cone surfaces. 
PLK coordinate-straining method is used to remove moving singular points that 
occur in the analysis of the inner region. First-order solutions for an elliptic cone 
at zero incidence, and the first-and second-order solutions for a circular cone at 
small incidence are obtained. Melnik, however, noted that while his solutions are 
uniformly valid in the entropy layer, they are not valid at the vertical singularity 
itself. No lift off of the vertical singularity was observed although a proof that 
such a behavior is possible under certain conditions was given. Mehrik [ 15, 161 also 
carried out a comprehensive analysis of the nature of the streamline patterns in 
conical flows for various angles of attack, with particular attention on the behavior 
of the streamlines in the neighborhood of the vertical singularity. Holt [17], 
Cheng [18,19], Woods [20], and Munson [21] also conducted such analyses. 

Since the present paper was completed, three other calculations have been 
brought to the authors’ attention. Bausset [22] developed a solution for un- 
symmetrical flow past a cone by the Pade Shanks method and applied this to both 
circular and elliptic cones; his results compare well with the BVLR method. Jones 



STEADY UNSYMMETRICAL. SUPERSONIC FLOW PAST CONES 467 

and South et al. [24] have developed methods for integrating between the shock 
and the cone surface along meridian planes. These are in the same spirit as the 
method developed here, but use different representations of the unknowns in the 
circumferential direction. 

We conclude this survey of previous investigations by mentioning the experimen- 
tal work of Holt and Blackie [25] which will form one of the bases for comparison 
with results obtained by the present investigation. 

In the present investigation, we present a numerical method which, for a wide 
range of free-stream conditions, gives valid solutions throughout the flow region 
between the shock and cone surfaces. Attention will be focused on the nature of 
the entropy field and streamline patterns outside and inside the entropy layer with 
the intention of verifying how variations in free-stream conditions influence the 
behavior of the streamlines near the vertical singularity. 

It is well known that Cauchy’s problem is, in general, improperly posed for an 
elliptic system of equations. Yet it would be desirable to exploit the obvious 
numerical advantages of working with Cauchy-type problems. For an a priori 
restricted class of solutions (such as the class of bounded analytic functions), 
Cauchy’s problem becomes correctly posed for elliptic systems. In this investiga- 
tion, we seek a class of bounded analytic solutions to the elliptic system of differen- 
tial equations governing conical flows. It is then possible to formulate a numerical 
method for a Cauchy-type problem with initial data prescribed at the shock surface. 
Based on the similarity of our problem to that posed in the subsonic region of 
supersonic blunt body flows, we adapt the numerical method first proposed by 
Telenin for axisymmetric blunt body problems (Gilinskii et al. [26]). 

Without loss of generality, our attention will be contined to flows past cones of 
circular cross sections possessing one plane of symmetry on which the free-stream 
velocity vector lies. In this case, the pertinent region governed by conical flow 
equations is a spherical surface bounded by the circular prot3e of the cone and an 
unknown shock profile. Adapting Telenin’s method, a number of meridional 
half-planes are passed through the flow region; intersecting the shock profile at 
nodes two of which lie in the symmetry plane. It is shown that the spherical flow 
region can be conveniently transformed to a plane rectangular domain by resorting 
to coordinates referenced with respect to the cone surface. Taking into account the 
periodicity of flow variables with respect to the azimuthal angle, their derivatives 
in this direction are approximated by the derivatives of trigonometric interpolation 
polynomials. The procedure reduces the system of partial differential equations to 
approximate ordinary differential equations holding simultaneously on the meri- 
dional half-planes. Approximate Cauchy data are assigned by prescribing at the 
nodes of the shock profile the constant coefficients of a trigonometric interpolation 
polynomial which defines an assumed shock shape. We can then integrate the 
approximate system numerically from the shock to the body surface. A stable 
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scheme is formulated for iterating on the assumed shock shape so as to satisfy the 
boundary conditions at the cone surface. 

As an example, numerical computations are carried out for the steady flow past 
a circular cone of semiapex angle 20”, yawed to a free stream of Mach number 
3.53 at angles varying from 0 to 20”. Additional computations are made for the 
axisymmetric flow past the same cone at Mach number 5. The calculated results 
are compared with those based on other numerical methods and with the experi- 
mental results of Holt and Blackie [25]. 

2. FORMULATION OF THE CONICAL FLOW PROBLEM 

General Equations and Boundary Conditions 

The equations of motion for supersonic flow past a cone are first referred to a 
spherical coordinate system (r, 0, +) such that r = 0 in the apex of the cone. 
6 = 0 coincides with the cone axis and the meridian plane 46 = 0 coincides with 
the plane of symmetry on the windward side of the cone (Fig. 1). Velocity com- 
ponents are written in dimensionless form in terms of the critical speed of sound a* 
while the density is divided by the density at infinity upstream p* and the pressure 
by p*a*2. 

FIG. 1. Coordinate system and velocities. 

We assume that the equation of state for a perfect gas is satisfied with constant 
specific heats y. The problem can then be expressed in terms of five unknowns: the 
pressure, the density, and three velocity components. There must be solutions of 
the three momentum equations, the continuity equation and the condition that 
entropy is conserved on streamlines. Since the flow is conical, these solutions will 
be independent of r. 

The boundary conditions are assigned at the intersections of the sphere r = cm- 
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stant, with the shock and cone surfaces. At the intersection with the circular cone 
surface, defined by 8 = 3, = constant, the normal velocity component must be 
identically zero. 

v = 0 (e = e,). Gw 

At the intersection with the shock surface, defined by 0 = 0x+), the boundary 
conditions are the shock equations. These are derived, in terms of the free-stream 
conditions and shock shape, from the Rankine-Hugoniot relations, 

u, = 4mn1, 

v, = qmns sin E cos E - n4, 

w, = qmn, cos’ Q + n4 tan Q, 

pt = q.a cos” 44 , 

PI = (+) qmensg cosp E - (+) (1 - $qmz), 

where 

n, = cos 01 cos 8. - sin OL sin 8. cos 4, 

n8 = cos u sin 8, + sin (Y cos 8, cos + + sin u sin t# tan E, 

n, = 
sin (x sin 4 - n, sin z cos c 

COS2 Q , 

n4 = 
1 - p8qm8(1 - ngB cost E) 

wh 
, 

Y-1 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

W-9 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

E is the angle, at any point on the shock surface, between the inward directed 
normal to the surface and the meridian plane 4 = constant passing through that 
point. 

E&cause of the presence of a plane of symmetry, it suffices to solve the problem 
in the half-plane 0 < C# < W, Additional conditions must however be imposed 
at the symmetry plane. 
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These are 
w=o ($ = 0, r) (2.14) 

(2.15) 

Entropy Field and the Streamline Equation 

Whenever the angle of attack is nonzero, the entropy jump across the shock wave 
front is no longer constant but varies according to the inclination of the shock to 
the free stream direction. As a consequence, the flow between the shock and cone 
surfaces is rotational. That entropy is conserved along a family of curves in the 
8, # plane is clearly indicated by the entropy equation in conical flow. These 
curves, which are the intersections of stream surfaces of constant entropy with the 
sphere r = constant, will henceforth be referred to as streamlines. Their equations 
are 

dt’ t-1 u sin 0 
d+ ==w- 

(2.16) 

In the disturbed region between the shock and the cone surfaces Eq. (2.16) gives 
the tangent to the streamline at any point on the sphere r = constant. The stream- 
lines emanate at the shock surface at angles which vary with 4. Substitution of 
Eqs. (2.1) and (2.14) into Eq. (2.16) shows that the intersections of the cone surface 
and the meridian planes 4 = 0, 4 = 7 with the sphere r = constant are stream- 
lines. Since streamlines cannot intersect at nonsingular points, it follows that the 
streamlines originating at the shock surface can neither terminate at the cone sur- 
face nor at the meridian planes of symmetry unless entropy singularities exist 
there. The entropy equation and Eq. (2.16) indicate that these vertical singularities 
occur at points where both v and w  are zero. The above development was due to 
Ferri [4]. As has been noted in the introduction, only one such singularity exists 
for a circular cone. 

Transformation of Coordinates 

It will be advantageous to transform the spherical polar coordinates (r, 8, +) into 
the coordinates (r, 5,~) referenced with respect to the cone surface 

where 

(2.18) 

(2.19) 
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The new coordinate system makes it easier to extend the present method to cases 
where the cone has noncircular cross sections. In addition, the transformation 
makes it possible to evolve an equal interval difference scheme in the 5 direction for 
the integration of the differential equations of motion. 

Equations (2.17) and (2.18) convert the region of interest 0 < # < n, 8, < fl < 8, 
into the square domain 0 < 7 < 1, 0 f t < 1 (Fig. 2). 

F 1 

F c 

0 E 

A 

D EL 
D A t 

FIG. 2. Transformation of the flow region. 

FIG. 3. hI%itiOIIiIIg Of the flOW region. 

3. TRLENIN’S METHOD 

Mathematical Basis of the Method 

In problems of supersonic flow around blunt bodies which give rise to detached 
shock waves, the differential equations governing the flow in the subsonic region 
are elliptic. While network difference schemes do provide solutions to these prob- 
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lems, such schemes require computers with large memory and involve lengthy 
computation. In contrast, numerical methods designed for Cauchy-type problems 
require less memory and are much faster. Thus, if a numerical scheme can be 
formulated in terms of Cauchy’s problem for elliptic equations, it should be 
superior to the traditional network difference schemes. However, Cauchy’s prob- 
lem for elliptic equations and systems is improperly posed (in the sense that small 
perturbations of initial data can induce large perturbations of the solution). 

The mathematical basis of the Telenin Method (Gilinskii et al. [261) rests on the 
fact that Cauchy’s problem becomes correctly posed for elliptic equations if the 
region is bounded and a priori restrictions imposed on the class of solutions 
considered. One such class is the class of bounded analytic functions. Telenin then 
proceeded to show that one can formulate an approximating technique which, by 
adequately taking into account the analyticity of the sought-for solutions, provides 
a converging and sufficiently stable method for the numerical solution of the 
problem. 

A Modelfor The Algorithm 

As a model, Telenin chose the two-dimensional Laplace equation, 

(3.1) 

de&red in the rectangular domain, 

-1 <x<l, O<y<b, 

and subject to the Cauchy data, 

and 

(2n + 1) lines x = X, are drawn through the domain, intersecting the initial line 
(y = 0; -1 < x < 1) in (2x + 1) nodes. The desired solution is approximated 
by Lagrange interpolation polynomials for x, 

(3.3) 

where for any tied y = yfi, +Pj,,(y) is a linear function of the values #,,*(x, , y) of 
the approximate solution at the (2n + 1) nodes. On substituting F!q. (3.3) into 
Eq. (3.1) and imposing the requirement that the derived expression be sat&&d 
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identically on all the lines x = X, , an approximating system of ordinary differen- 
tial equations results. 

F + F j(j - 1) I&( JJ) xi-’ = 0, (k = 0, 1, 2 ,..., 2n + 1)s (3.4) 
j=2 

with initial conditions, 

(3.5) 

This system can now be numerically integrated starting at the initial line and pro- 
ceeding towards y = b. Telenin demonstrated that 

#L(Y) = h*(xl~ ,Y> = Re[h + it], 

where 

X = F Uj+Zk*, 

j-0 
(3.7) 

and 
zk = xk + iy 

is a solution of Eq. (3.4). This solution converges as n -+ co, the dimensions of the 
region of convergence depending on the position of the singularities of the initial 
data. 

A Note on the Accuracy of the Method 

Based on the analysis of the above model, the accuracy of the method is found to 
increase with the number of integration steps as a result of increase in the informa- 
tion concerning the ana&ticity of the functions involved in the method. This 
contrasts with the ordinary Merence methods, where increase in number of inter- 
vals offers no more information about the analytic nature of the functions than was 
assumed in the beginning. The best number of lines x = xj that should be used 
depends on the desired accuracy of the approximation of the solution in the direr 
tion of the initial line. This in turn depends on the character of the specific problem 
being considered. 

There is only one crucial restriction to the use of Telenin’s method. The round- 
off errors during computation must be quite small before the method can form the 
basis for the solution of an elliptic system as a Cauchy-type problem. 
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4. FORMULATION OF NUMERICAL ALGORITHM 

Tekwin’s Method Adapted to Conical Flows 

The equations governing conical flows under investigation are elliptic in the two 
independent variables 4, ‘I. Here, ellipticity is defined by (v2 + w”) < a2. We seek 
a class of analytic bounded solutions I(, v, w, p, p to the set of conical equations 
subject to the boundary conditions (2.1) to (2.15). Based on the analysis of the last 
section, Cauchy’s problem is correctly posed for this set, and accordingly Telenin’s 
method can be used. 

Through the flow region between the cone and shock surfaces we pass (2n + 2) 
equally spaced meridional half-planes + = constant, two of which coincide with 
the symmetry plane (i.e., # = 0, 4 = n). The intersections of these planes with the 
sphere r = constant are (m + 2) lines 1) = vi = constant in the transformed plane 
of interest 0 < 7 < 1, 0 < E < 1 (Fig. 3). 

If the shock proIile [ = 0 is regarded as the initial line, then the dependent 
variables and the shock angle should be approximated by polynomials in 5. w  is 
odd with respect to the symmetry plane, while u, v, p, p, 8, are even. However, 
since the approximated functions are periodic with respect to 4 = ryn, it will be 
more appropriate to use trignometric interpolation polynomials, namely, 

(4.1) 

This latter approach has two advantages. The approximations are smoother 
and the conditions at the plane of symmetry are satisfied identically. 

These expressions are substituted into the governing partial difIerential equations 
with the requirement that the resulting equations be satisfied identically on each 
line Q . An approximating system of 5(m + 2) G&-order ordinary differential 
equations is then obtained for the approximate values Us , vi , pi, pr of the dependent 
variables on the (m + 2) lines vi = constant. For example, the equation for us is 

du, (vi” + w<~) 7r sin & - ut’wt -= 
& ?rKi sin pi 

, (4.4) 
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and KS is a given function of the unknowns. The boundary conditions remain as 
given in Eqs. (2.1) to (2.13) with the subscript i appended to all variables. 

5. NUMERICAL COMPUTATIONS 

General Remarks 

To integrate the ordinary differential equations of type (4.1) numerically, con- 
stant coefficients ek are assigned at the (m + 2) nodes of the initial line S = 0. 
The discrete values ellr defining the shock shape can then be determined. Substitution 
of these into the shock relations (2.2) to (2.13) gives the initial values of the depen- 
dent variables for some prescribed angle of attack, free-stream conditions and cone 
angle. 

The equations are now integrated step-by-step towards the cone surface e = 1, 
using a stable numerical scheme. At each step, the calculated values of the depen- 
dent variables must be used to determine the coefficients of the trigonometric 
polynomials. The coefficients are needed for the approximation of the derivatives 
of the variables with respect to ~7 at this step. For Telenin’s method to be valid 
during the process of integration, any numerical scheme chosen must incorporate 
the above procedure. 

At the intersection of the lines qi = constant with the cone surface the bound- 
ary conditions vi = 0 are tested. In general, these will not be satisfied by the fist 
choice of ck at the initial line 5 = 0. Thus, a suitable iteration scheme has to be 
formulated for choosing the L$ that will result in the satisfaction of the boundary 
conditions at the cone surface. 

We now define a new parameter, Ai, by 

Ai(S) = pip?. (5.1) 

Since lli = constant along streamlines, it will, henceforth, be referred to as the 
entropy parameter. fli plays two very important roles: 

(i) Since the thin entropy layer surrounding the cone surface is characterized 
by very high gradients in entropy, the behavior of dAi/de near the cone surface 
should indicate roughly the extent of the entropy layer, 

(ii) The high gradient in entropy in the vertical layer is the result of a high 
gradient in the dependent variables. Unless a sufficiently small step-size is used near 
the cone surface, there may be large distortions in the derivatives of these variables 
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with respect to the geometric coordinate 5. Under these conditions, we may have 
a situation in which all ui M 0 but Lli f constant. This implies either that we are 
on a false cone surface or that the distortions have made the computed values on 
the cone unreliable. Thus, the requirement that (li M constant on 5 = 1 simul- 
taneously with Vi SW 0 serves as a guide in choosing step-size near the cone surface. 

Scope of Numerical Work 

Assuming y = 1.405, the following cases are investigated for a circular cone 
0f 8, = 20”. 

Case Z (Axisymmetric Flows). 

(i) M, = 3.53. 

(ii) M, = 5. 

Case ZZ (Unsymmetrical Flows). 

(i) M, = 3.53, (Y = 5”. 

(ii) M, = 3.53, 01 = 10”. 

(iii) M, = 3.53, a: = 15”. 

(iv) M, = 3.53, a = 70”. 

These cases were selected because experimental results and theoretical computations 
based on assorted numerical methods are available for comparison. The two most 
common bases for comparison are the pressure coefficient at the cone surface and 
the integrated lift and drag coefficients. For this analysis the pressure coefficient is 
given by 

cp&[ (1 + (Y - W) Mm’) 
m (Y + w p-+1. (5.2) 

In all the cases investigated, an &point approximation (2m + 2 = 8) is used. 
This implies 8 points on the shock surface or equivalently 5 lines r)# = constant 
through the relevant region 0 < r) < 1,O < 5 < 1. A total number of 25 coupled 
first-order ordinary differential equations then result. 

A fifth-order Runge-Kutta scheme with automatic error and step-size controls 
is used to integrate the equations on the CDC 6400 computer. This scheme, ori- 
ginally derived by Zonneveld [27] and later modified by Downton [28], uses 
six intermediate points in each interval and one additional point for step control. 
Thus, it performs seven derivative evaluations at each step. It uses variable step 
size in order to achieve a given accuracy by a minimum number of steps. In this 
investigation, the relative error bound was preset at 104. 
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A Note on Axisymmetric Cases 

In the case of axisymmetric flows, the nondependence of the flow variables on 
the azimuthal angle # lowers the order of the equations by one. Accordingly, the 
extent of nonlinearity of the equations and the boundary conditions are reduced. 
Because of these reasons, computations made for axisymmetric flows can be 
regarded as some sort of test cases for checking the accuracy and validity of the 
Telenin method. The tests are, however, informal since no entropy layers or 
vertical singularities exist in axisymmetric flow. 

Computed results are tabulated in Appendix C. Compared with the results 

60' 

65. 

FIG. 4. Dependence of shape of shock wave on angle of attack. 
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obtained by the Ames Research Staff 1291, the present method gives shock shapes, 
8, , with maximum error of 0.5 %. 

The convergence of the numerical scheme for these test cases was found to be 
very fast. 

Shape of Shock Wave Front 

Figure 4 gives the shock profiles on a sphere r = constant for various angles of 
attack. None of the profiles are circular but those for 5 and IO” angles of attack 
are nearly circular. The figure seems to indicate that all the profiles do intersect at 
a common point. The variations in shock angle at the windward plane of symmetry 
as the angle of attack increases occur in the third decimal place of radian measure. 
In contrast, the variations at the Ieeward side are quite substantial. 
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FIG. 5. Intersections of stream surfaces with a unit sphere (a = 5’). 
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Entropy Fiefd and Streamline Patterns 

The streamline patterns for various angles of attack are shown in Figs. 5-8. 
They indicate the nature of the entropy field whose actual behavior is better charac- 
terized by the plot of the entropy parameter, A = p/py in Fig. 9. 

The existence of two cross-flow stagnation points (Ferri [4]) at the intersections 
of the plane of symmetry with the cone surface is confirmed. The stagnation point 
at the windward side behaves like a saddle point with respect to the streamlines; 
while the stagnation point at the leeward side is a node to which all the streamlines 
converge. The existence of the vertical singularity is thus confirmed. However, 
within the range of angles of attack covered by the present investigation, no evi- 
dence was found of the lift-off of the vertical singularity as suggested by Ferri. 

13 

12c 

IO!  

91 

7: 

60 

45 

/ 

225. 

-270* 

i 

3154 

FIG. 6. Intersections of stream surfaces with a unit sphere (a = 10”). 
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For moderate to high angles of attack, various theoretical and experimental 
results have shown that the minimum of surface pressure distribution shifts from 
the leeward plane of symmetry to some point between C$ = 0 and 4 = T. 
R. E. Melnik [16] has suggested that under this condition the vertical singularity 
may be displaced to the new minimum of surface pressure. Our computations for 
20” angle of attack confirm the shift in the minimum of surface pressure (Fig. lo), 
but there is no evidence of the displacement of the vertical singularity (Fig. 8) as 
suggested by Melnik. 

At 5” angle of attack all the streamlines appear to touch the cone surface before 
they reach the vertical singularity, thus exhibiting an envelope-like behavior 
observed by Stocker and Mauger [9]. As the angle of attack increases, this be- 
havior becomes gradually lost; with the result that streamlines appear as if they 
are being blown away from the cone face. For example, at 10” angle of attack, the 
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FIG. 7. Intersectons of stream surfaces with a unit sphere (a = W). 
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streamlines emanating from the shock at points in the interval 3?r/4 < + < 7~ do 
not touch the cone surface before reaching the vertical singularity. At 15” angle of 
attack, the interval increases to approximately 77/2 < 4 < n. The relation between 
this phenomenon and the direction from which the streamlines enter the vertical 
singularity is obvious. At small angles of attack, all the streamlines enter the 
singularity from a direction tangential to the cone surface; at high angles of attack, 
the direction becomes normal to the cone surface (i.e., tangential to the plane of 
symmetry); at intermediate angles of attack, the directions can range from tangen- 
tial to normal to the cone surface. 

The existence of the entropy layer is confirmed by the behavior of the stream- 
lines near the cone surface especially at 5” angle of attack. The high gradients of 
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FIG. 8. Intersections of stream surfam with a unit sphere (U = 20”). 
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entropy in the region (EJ w  1) are evident in the plots of entropy parameter for 5 
and lo” angles of attack (Fig. 10). Two inferences can be made from this plot. 
Firstly, the gradients of entropy in the layer are steeper at the leeward side of the 
cone than at the windward side. This seems physically justifiable by the proximity 
of the leeward side to the vertical singularity. Secondly, in any given meridian 
plane, the gradients of entropy near the cone surface become less steep with in- 
creasing angle of attack. This suggests that, contrary to the findings of Stocker and 
Mauger, the entropy layer does not remain uniformly thin at all angles of attack. 
The thickness increases with the angle of attack. Our computations show that at 
20” angle of attack the entropy layer is quite thick compared with the case of the 
5” angle of attack. Melnik [I 51 obtained similar estimates of entropy layer thickness 
using the method of matched asymptotic expansions. 
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FIG. 9. Variation of entropy parameter, A = p/py, along lines 7 = constant. 
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FIG. 10. Dependence of pressure coefficient at the cone surface on angle of attack. 

+ (DEGREES1 

Surface Pressure Coeficient: Integrated Drag and Lift Coeficients 

The dependence of surface pressure coefficient on angle of attack is shown in 
Fig. 10. The extent of the accuracy which Telenin’s method can achieve is indicated 
by comparisons with results of experiment and other numerical methods (Figs. 11, 
12). Experimental values are from the work of Holt and Blackie [25]; while theo- 
retical results are those obtained by the first approximation of the method of 
integral relations, and from the Kopal tables for Stone’s first- and second-order 
theories. 

In all cases investigated, the computed surface pressure coefficient and the in- 
tegrated drag and lift coefficients compare very favorably with experimental values. 
The computed values of surface pressure coefficient are generally lower than the 
esperimental values near the leeward plane of symmetry; the maximum error being 
approximately 4.5 %. As the angle of attack increases, the computed values of 
integrated drag and lift coefficients drop below experimental values; a maximum 
error of 4 y0 occurring at 01 = 20”. 

In general, a closer agreement with experimental observation is obtained by the 
present method than by either the method of integral relations or Stone’s first- and 
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second-order theories. The only other numerical method which has been shown to 
produce as good an agreement with experimental results is the BVLR time-limiting 
method (Babenko et al. [14]). 

0.7 

0.6 

0.5 

0.4 

% 
0.3 

0.2 

0.1 

0 

0.075 

(b) 

+ I DEGREES) 

I I I 

a= 20” 

FIG. 11. (a) Comparison of theoretical and experimental values of pressure coe5cient at 
the cone surface. (b) Comparison of theoretical and experimental values of pressure coe5cient 
at the cone smface. 
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FIG. 12. Dependence of integrated drag and lit wefficients on aqle of attack (experimental 
and theoretical comparison). 
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